

Why statistics in road safety research?

Our questions are not simple:

- When and how accidents occur?
 - ▶ Understanding a situation → observe & estimate
- Why accidents occur?
 - Understanding relationships → observe & estimate;
 association models

 Exposure
 Outcome

- What can affect occurrence of accidents?
 - ► Evaluation of actions → experimental studies; intervene and then observe & estimate;
 - → test effectiveness

2

Why statistics in road safety research?

Road safety and traffic issues are complex:

- When and how accidents occur?
 - Multiple inter-connected factors
- Why accidents occur?
 - ▶ Multiple factors may be associated; but causal relationship?
 - What is the 'risk' of occurrence? probability, chance, usually not 0 or 1
- What can affect occurrence of accidents?
 - Variability in exposures and in probabilities of occurrence
 - Need proper experimental designs
- → Uncertainties; Multiplicities

3

IIT-Delhi 2020 Dec 03

Statistics – definitions I & II

- ▶ Old definition measurements of the state: 'stat' & 'ics'
 - Summarized → description of the population
 - Still used today:
 - Census e.g. injury surveillance, Fatality Analysis Reporting System (FARS), International Road Traffic and Accident Database (IRTAD)
 - Counts
 - □ Police records of reported crashes
 - □ All hospitalizations due to trauma
 - □ All insurance claims for injuries/deaths
- Definition based on how to misuse/abuse information
 - A was die
 - A way to "
 - Ov values

4

Statistics - definition III

 Scientific definition – measurements on a sample from the population

Role of statistics in addressing our questions

- Addressing our research questions in the face of uncertainty
 - Inherent variability in what we are studying
 - Incompleteness of information from sampling
 - ▶ Role of chance
- ▶ Statistics is the methodological science that allows for the understanding of quantitative information in the midst of uncertainty – a way of thinking
 - Quantify it, Understand it, Reduce it, Control it
 - ▶ Probability (risk) models
 - Descriptive analyses
 - Controlled studies
 - Regression models

Statistics – collective & individual risks

► The # of accidents in a given space/area L & time period T follows a Poisson distribution

The Poisson distribution

$$Pr(\# = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$
where $\lambda = [\lambda_0 LT]$

▶ The instantaneous conditional probability of being in an accident at a given time point t = hazard

$$h(t|X) = \frac{\Pr(accident = yes \ in \quad t|X, not \ in \ accident \ before)}{\Delta t}$$

7

IIT-Delhi 2020 Dec 03

Modeling risks

- We want to understand risks
- We need to control uncertainty in the estimation of the risks
 - Risk model of a trend in a given locality mathematical functions
 - Risk models in multiple individuals or localities statistical models
- Statistical methods are concerned with
 - ways to 'control' uncertainty
 - reduce variability
 - reduce sampling uncertainty
 - ightarrow to understand estimates of risks (we provide bounds based on uncertainty) or relationships among quantitative factors and risks in a population

> 3

Uncertainty

- When we estimate 'risks' as a probability we do it with uncertainty!!
 - Instantaneous conditional risk \rightarrow hazard function h(t|X)
 - Number of accidents/victims → distribution function (e.g. Poisson model, Negative binomial model, ...)
 - Example: Delhi pedestrian risks from individual to collective
 - ▶ Individual risk is very low $\sim 0.00007 = 7 * 10^{-5}$ [how obtained?]
 - Collective risk is high since exposure is high 13,000,000 exposed [who is 'exposed'?]
 - → expect 910 pedestrian fatalities

13

IIT-Delhi 2020 Dec 03

Uncertainty

- When we estimate 'risks' we do it with uncertainty!!
- → Addressing our research questions in the face of uncertainty
 - Inherent variability in what we are studying
 - Incompleteness of information from sampling
 - ▶ Role of chance
 - Also: measurement error in everything we study!
 - ▶ Estimating numerator: outcomes
 - ▶ Estimating denominator: exposures

14

The study of variability

- ▶ Every crash is so particularly, uniquely different
- Statisticians do NOT study individual crashes or persons, but study groups of crashes or persons

▶ The behavior of the group is called the 'distribution' of the behavior

- Researchers focus on the central tendency (mean, median, mode)
- Statisticians focus on the variability (variance, range)

15

IIT-Delhi 2020 Dec 03

Incompleteness → Uncertainty

- In order to understand a situation → must study several occurrences
 - HOW MANY?
- Since we cannot usually study ALL situations, we study an incomplete subset
 - A 'sample' is never complete, leading to uncertainty
 - ▶ How representative is it of the complete set?

▶ 16 IIT-Delhi 2020 Dec 03

Why do we have uncertainty?

Uncertainty from sampling

20 possible samples of size 3 – all equally likely to happen

We usually take only 1 sample →
Chance gives 1 of many possible

The one we get is 'the luck of the draw'!!

We use it to 'guess' at the population, but we are never certain!

23

IIT-Delhi 2020 Dec 03

Uncertainty

- ▶ How can we eliminate the uncertainty?
 - ▶ Reduce: stratified sampling
 - ▶ Eliminate: study the entire population!

- → Census; all medical records; all car crashes, ...
- →There is no need for statistics, except for summarizing information
- ...but, \$\$\$ and often impractical or impossible!

24

Sampling process

- ▶ How do we select the sample?
- Criteria
 - Sample should be 'like the population' → representative
 - ▶ Sample should be selected without introducing personal biases
 → objective
 - Sample should provide a 'correct estimate' of the population parameter → unbiased
 - Sample should provide a 'precise estimate' of the population parameter → 'adequate' size
 - → 'Probability' sample = we know the probability of selection of each person in the population

25

IIT-Delhi 2020 Dec 03

Sampling process

- 'Probability' samples
 - ▶ Simple random sample
 - Systematic random sample
 - Stratified random sample
 - ▶ Cluster random sample
 - Area random sample
 - ▶ Complex multi-stage probability sample
- What about 'purposively selected' sample?
 - Convenience sample = garbage sample
 - 'internet' sample ?
- What about not sampling and studying the entire population?

26

Other sources of uncertainty

Imprecision

- ▶ Systematic errors biases
 - Systematic measurement errors
 - ▶ Recall bias
 - ▶ Observer (instrument) bias
 - Data sources have different quality classification bias
 - Systematic sampling errors
 - Selection biases
 - ▶ Data sources different coverage
 - Non-response bias missing data
- Random errors
 - Variation due to measurement
 - Variation due to sampling chance!

> 28 IIT-Delhi 2020 Dec 03

How can statistics help us?

- Statistics helps understand the behavior of quantitative data in GROUPS
 - In a population, we want to know:
 - ▶ Behavior of a single variable at a given time point risks
 - ▶ Behavior of single variable over time trends
 - ▶ Behavior of multiple variables relationships
 - In a sample from the population, we are able to obtain:
 - ▶ Behavior of a single variable at a given time point estimation
 - ▶ Behavior of single variable over time time series analyses
 - ▶ Behavior of multiple variables regression models

29

IIT-Delhi 2020 Dec 03

Research questions in Road safety

- ▶ What are the effects on risks of doing X?
 - ➤ X = decisions in engineering, planning, regulation & policy; education, ...
- Examine links between variables/factors and safety risks
- Themes
 - Accident analysis and prevention
 - Behavioral and social issues
 - ▶ Trauma care services
 - Legal and compliance issues

→ relationships

30

Unique issues in injury research

- Non-constant exposure → impact on appropriateness of indicators
- Counting rare events → impact on demonstrating effects and distributional models
- Multiple factors → complexities
- Intervening on the extreme cases → 'regression to the mean'
- ▶ Study design options → observational vs experimental

31

IIT-Delhi 2020 Dec 03

Exercise

▶ Research Question:

Do lower speeds lead to safer roads?

- How do we answer this question?
 - What type of study?
 - How we define 'lower'? How do we define 'safer'?
 - Who or what do we study? How many?
 - Who or what do we compare results to? How many?
 - What data do we collect? How do we measure it? When do we measure? For how long do we measure?
 - What is a meaningful relationship?
 - How can we know if what we observe could have been due to chance?

32