Demonstration of CLAIRE-SITI and cockpit development

Gerard Scemama
Research director, COSYS/GRETTIA
Architecture

Data providers

- Theoretical data
- Real data
- Measures + events

ClaireSITI

- Universal server
- Exchanges normalised (ex: XML)

- Référentiel
- Geographical DB

Integration

- Diagnosis

Decision

- Actions
- Operations

Observatory

- Modeling
 - Simulation
 - Assignment

Warehouse

Service providers

- New Services
 - Mobility centre
 - Route path calculator
 - Vulnerable user assistance
 - Dynamic map
 - Responsive transport
 - Crisis management system

04/10/2018

DATA MANAGEMENT PRACTICES AND TOOLS FOR EFFICIENT BUS OPERATIONS

Demonstration of ClaireSITI and cockpit development
CLAIRE-SITI : A reference system for intermodality

- A GENERIC MULTIMODAL DATA MODEL
 - Any type of network (road, public transport, alternative modes)
 - Any type of indicator (congestion, time adherence, regularity, availability, reliability, sustainability)
 - Any type of event

- AN ANALYSIS ENGINE WITH FUNCTIONS
 - observatory,
 - monitoring,
 - diagnosis,
 - decision/operation action

- A TOOL THAT
 - Support the development of public policies for a sustainable mobility
 - Can be integrated in service and industrial chains
 - Enhance research on Intermodality
Generic data modeling

Resources & Trip units
Planning

Logical multi-level network
Hierarchical network graph
Interaction graph

Label

Representation space
Topological and geographical forms (GIS)
Indicators
Events

Normalisation CEE:
TRANSMODEL, TRIDENT, SIRI, IFOPT

Normalisation CEE
DATEX, INSPIRE
(conceptual spatial data model)
Structure: hierarchised multi-level & interaction graph

Hierarchical

Level 3 1+2+3+5++

Level 2 1+2+3+ u_{6^1+4^3+5} 5++

Level 1 1+2+3 u_{6^4} 4 u_{5^+} 6+

Level 0 1 3 u_{6^3} 4 u_{5} 5 6

Interaction

v1 v2 v3

u2 u3 u4 u5 u6

Road network

u1 Interaction

PT network

v1 v2 v3

b1 b2

Detailed network: stops

04/10/2018

DATA MANAGEMENT PRACTICES AND TOOLS FOR EFFICIENT BUS OPERATIONS
Demonstration of ClaireSITI and cockpit development
Multi-criteria: Indicators & supervised variables

<table>
<thead>
<tr>
<th>LOGIQUE</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punctuality</td>
<td>Delay, Advance</td>
</tr>
<tr>
<td>Regularity</td>
<td>Waiting time, Headway/Interval</td>
</tr>
<tr>
<td>Reliability</td>
<td>Commercial speed, Speed variation</td>
</tr>
<tr>
<td>Availability</td>
<td>Ratio Supply</td>
</tr>
<tr>
<td>Passenger Demand</td>
<td>Alighting, Boarding, Passenger volume, Loading,</td>
</tr>
<tr>
<td>Transfer</td>
<td>Transfer time</td>
</tr>
<tr>
<td>Fluidity</td>
<td>Flow, Occupancy, Speed</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Carbon monoxyde, Pollutant Monoxyde (CO, Nox,...)</td>
</tr>
</tbody>
</table>

Node Arc Network Resource Trip unit

Level of Service (LoS)
Interpretation : Supervised or LoS variables

« Supervised» variables allow to monitor the Level of Service (LoS) and to know:
- Time spent in abnormal state
- Percentage length of the disturbance: percentage of the network length in abnormal state
- Volume of the disturbance (temporal cumulative sum of the percentage of the network length in abnormal state)
- Volume of the disturbance weighted by traveller demand (not yet available)
Event modeling

Event(type, sub_type, author, Causes, Effects, start-time, end-time, From, To,)

- Event
 - Trafic PC operator
 - Accident
 - Event
 - Expert-Diagnosis
 - Congestion
 - Event-control action
 - Expert-decision
 - Favoring re-routing path
 - Event
 - Police operator
 - Lane closure
 - Event-control action
 - Bus operator
 - Bus line deviation
 - Event
 - Expert-diagnosis
 - Delays at stop
 - Event-Intervention
 - PC-Operator
 - Emergency vehicle

04/10/2018
Dimensions of the Analysis

Entity:
- Network, Route, Link, Node
- Vehicle, Driver, Traveller

Diagnosis:
- Disturbance, Event

Indicators:
- Punctuality,
- Regularity,
- Reliability,
- Fluidity,
- Sustainability

Time:
- hour:mn; day, type of day, month, year
WP1 – Data Interfaces

DIMTS AVL data
- Stops location
- Road line (LineString)
- Trip details (scheduling at terminus only)
- Bus GPS location (Lon, Lat coordinates each 10 s)

DIMTS ETM data
- Fare stage collection
- Passenger OD flow between fare stage stops

Claire SITI

- Data Interfaces

Structural
- Logical graphs (nodes as stops, links between two stops)
- Physical graphs (Point, Poly line)

Vehicle monitoring
- Matching algorithm on vehicle tracking along the links

Time performance indicators at vehicle, stop and link levels
- (travel time, delay, headway)

Passenger demand indicators
- (Boarding, Alighting, PassengerVolume, Loading)

04/10/2018

DATA MANAGEMENT PRACTICES AND TOOLS FOR EFFICIENT BUS OPERATIONS
Demonstration of ClaireSITI and cockpit development
Operation LoS indicators in the ClaireSITI platform

<table>
<thead>
<tr>
<th>Logic of Operation</th>
<th>LoS indicators</th>
<th>LoS threshold</th>
<th>Disturbance duration threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regularity</td>
<td>Interval (Headway)</td>
<td>Real Interval/theoretical interval <50 or > 150%</td>
<td>Duration > 2 * theoretical interval</td>
</tr>
<tr>
<td>Punctuality</td>
<td>Delay</td>
<td>Predicted delay < = -4mn</td>
<td>Duration > 2 * theoretical interval</td>
</tr>
<tr>
<td>Punctuality</td>
<td>Advance</td>
<td>Predicted advance > 2mn</td>
<td>Duration > 2 * theoretical interval</td>
</tr>
<tr>
<td>Reliability</td>
<td>Speed</td>
<td>Real speed /Theoretical speed < 50% or >150%</td>
<td>Duration > 2 * theoretical interval</td>
</tr>
<tr>
<td>Regularity</td>
<td>Coefficient of variation of the speed during the last hour</td>
<td>Coefficient Variation = Standard deviation/Mean >20%</td>
<td>Duration >= 0</td>
</tr>
<tr>
<td>Vehicle supply</td>
<td>Vehicle supply during the last hour (rolling horizon)</td>
<td>Ratio = real vehicle count / theoretical count < 50%</td>
<td>Duration >= 0</td>
</tr>
<tr>
<td>Passenger demand at Fare stops</td>
<td>Loading during the last hour (rolling horizon)</td>
<td>Ratio PassengerVolume/Real vehicle count during the last hour> 90</td>
<td>Duration >= 0</td>
</tr>
</tbody>
</table>
LoS indicators monitoring (percentage of abnormal states)
Cockpit (On/Off Line)

Dynamic Spatial map

CLAIRE-SITI Cockpit

Temporal Graph chart editing

LOS monitoring

Reporting
Cockpit configuration
Cockpit replay Demo
Speed/Loading lines reporting 06:00-10:00
Speed difference reporting

Time	05:50	06:00	06:10	06:20	06:30	06:40	06:50	07:00	07:10	07:20	07:30	07:40	07:50	08:00	08:10	08:20	08:30	08:40	08:50	09:00	09:10	09:20	09:30	09:40	09:50	10:00						
	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17