



# Traffic Flow: Principles and Characteristics

**D P Gupta** 

## **Traffic Flow: Key Terms**

- Density : Number of vehicles per km
- Speed : Number of km per hour (rate of motion in distance)
- Volume / Flow : Number of vehicles per hour (that pass a given point on a road)
- Flow = Density X Speed



- U<sub>f</sub> Free Flow Speed when density is zero (also written as V<sub>f</sub>)
- k<sub>i</sub> Jam Density when speed is zero

## **Notions of Congestion and Capacity**



| Capacity:       | Maximum number of vehicles that can reasonably be expected to use the traffic facility in a given time period                                                       |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | under prevailing roadway, traffic and control conditions                                                                                                            |
| Service Volume: | Maximum amount of traffic that can be accommodated<br>while maintaining the defined operating conditions is<br>termed the service volume for that level of service. |

## **Levels of Service on Highway Facility**

| Level of service | General operating conditions |
|------------------|------------------------------|
| Α                | Free flow                    |
| В                | Reasonably free flow         |
| С                | Stable flow                  |
| D                | Approaching unstable flow    |
| E                | Unstable flow                |
| F                | Forced or breakdown flow     |

### **Typical Illustration of LOS on Urban Roads**

| LOS   | Description                                                                                                                                                                                                                                                                                                                                                                    | Illustration |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| LOS-A | Represents a condition of free flow.<br>Individual drivers are virtually unaffected by<br>the presence of others in the traffic stream.<br>Freedom to select desired speeds and to<br>manoeuvre within the traffic stream is high.<br>The general level of comfort and<br>convenience provided to the road users is<br>excellent.                                              | TO SIGN JAN  |
| LOS-B | Represents a zone of stable flow, with the<br>drivers still having reasonable freedom to<br>select their desired speed and manoeuvre<br>within the traffic stream. The level of comfort<br>and convenience provided is somewhat less<br>than the Level of Service A, because the<br>presence of other vehicles in the traffic<br>stream begins to affect individual behaviour. |              |

#### **Typical Illustration of LOS on Urban Roads**

| LOS   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Illustration      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| LOS-C | This also is a zone of stable flow but marks the<br>beginning of the range of flow in which the<br>operation of individual drivers starts getting<br>affected by interactions with others in the traffic<br>stream. The selection of speed is now affected<br>by the presence of others, and manoeuvring<br>within the traffic stream requires vigilance on<br>the part of the user. The general level of<br>comfort and convenience starts declining at<br>this level. | PO MEMBRIE TRESCO |
| LOS-D | Represents the limit of stable flow, with<br>conditions approaching unstable flow. Due to<br>high density, the drivers are severely restricted<br>in their freedom to select desired speed and<br>manoeuvre within the traffic stream. The<br>general level of comfort and convenience is<br>poor. Small increase in traffic flow will usually<br>cause operational problems at this level.                                                                             | C DALESAR         |

#### **Typical Illustration of LOS on Urban Roads**

| LOS   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Illustration                                         |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| LOS-E | Represents operating conditions when traffic volumes are<br>at or close to the capacity level. The speeds are reduced<br>to a low, but relatively uniform value. Freedom to<br>manoeuvre within the traffic stream is extremely difficult<br>and is generally accomplished by forcing a vehicle to give<br>way to accommodate such manoeuvre. Level of comfort<br>and convenience is extremely poor, and driver's<br>frustration is generally high. Operations at this level are<br>usually unstable. Small increases in flow or minor<br>disturbances within the traffic stream will cause<br>breakdowns. | 2-bi-2015 1B:2+:15<br>2-bi-2015 1B:2+:15<br>10-bales |
| LOS-F | Represents zone of forced or breakdown flow. This<br>condition occurs when the amount of traffic approaching a<br>point exceeds the amount which can pass it. Queues form<br>behind such locations. Operations within the queue are<br>characterized by stop and go waves, which are extremely<br>unstable. Vehicles may progress at a reasonable speed<br>for several hundred meters and may then be required to<br>stop in a cyclic fashion. Due to high volumes, break-down<br>occurs, and long queues and delays result.                                                                               |                                                      |

# **Typical Volume: Capacity Ratios**

| LOS                                                         | V/C Ratio | PCUs / hr per lane |
|-------------------------------------------------------------|-----------|--------------------|
| Α                                                           | 0.25      | 500                |
| В                                                           | 0.45      | 900                |
| С                                                           | 0.65      | 1300               |
| D                                                           | 0.85      | 1700               |
| E                                                           | 1.00      | 2000               |
| F                                                           | >1.00     |                    |
| Normally applicable for multi-lane highways and expressways |           |                    |

#### **Two-Lane Roads**

Capacity = LOS E = 2800 PCUs per hour (USA) LOS B = 0.45 x 2800 = 1260 PCUs per hour Suppose Peak Hour = 8 percent of average daily Daily volume at LOS B =  $\frac{1260}{8} \times 100 = 15750$ PCUs/day Say 15000 PCUs per day

In hill areas, normally half of such figures to account for effect of gradients and curvature.

#### **Four-Lane Roads**

- Design service volume at LOS B = 900 x 4 = 3600 per hour
- Support it is 8% of Average Daily

Then Average Daily =  $\frac{3600}{8} \times 100 = 45000 \text{ PCUs}$ 

### Indo HCM: Capacity at LOS E

- Two Lane 3100 PCU / hour
- Intermediate Lane 2150 PCU / hour
- Single Lane 800 PCU / hour

# **Traffic Projections**

- Economic growth of state
- Trends in increase of vehicle ownership / registration
- Start system of traffic counts on NHs, SHs (twice a year)
- Publish hour-wise data of traffic at toll plazas
- Developing states will show higher annual growth (Low PCI)
- Developed states will show lower annual growth (High PCI)
- We also need to undertake axle load surveys in respect of trucks and buses

#### Access Management: Broad Principles (Some Thoughts)

- On NHs, SHs passing through urban areas
  - Option 1: Service roads / footpaths / cycle tracks depending upon abutting land use
  - Option 2: Bypass (with limited Entry / Exit)
- On multi-lane highways passing through non-urban areas
  - Option 1: Service roads
  - Option 2: Median openings (not less than 3 km apart)
- Develop expressways

### Phased Development Approach (Cost-Effective Strategy)

- Provide Capacity
  - Neither Too Much Too Early
  - Nor Too Little Too Late
- Optimal Timing
  - > To achieve efficiency of investments
  - To spur economic growth
- We need mobility but not at cost of safety
  - So, we need to invest in safety
  - Side by side of investing in mobility



asianinstitute.del@gmail.com dpgupta36@gmail.com